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ABSTRACT: Beat-transfer rates to a 5 cm diameter dry ice 
spbere for Macb numbers 1.86, 2.87, and 4.25 were determined 
from ablation experiments. Results are compared with heat
transfer rates to a non-evaporative model subjected to the 
same flow conditions. Beat-transfer rates to the subliming 
model calculated from mass ablation rates were found to be 
two to three times as great as heat-transfer rates to non
evaporative models when only convection was considered. 
This report shows tbat beat conduction effects internal 
to tbe dry ice model are significant, especially at tbe 
highest Mach number tested, where tbe greatest change in 
environmental pressure occurred. Other factors contribu
ting to tbe large heat-transfer rates in the subliming 
models are: (1) change in model shape during blow; (2) 
increase in surface roughness during blow; and (3) loss 
of mass witbout beat transfer through fragmentation. 
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Missiles flown at high speeds encounter severe aerodynamic 
beating which may cause serious damage to the vehicle. The 
use of ablating materials as a scheme to reduce these high 
temperatures is receiving particular attention. For this 
reason, investigations concerning the behavior of an ablat
ing substance, dry ice, under the conditions of supersonic 
flOW, have been conducted at the U. S. Naval Ordnance 
Laboratory under Task Number NO 502-825/51014/01. This 
report utilizes experimental mass transfer data, obtained 
by K. H. Gruenewald in the NOL wind tunnel, for the con
sideration of heat transferred from air to a solid carbon
dioxide sphere subjected to supersonic flow. 

The author is indebted to Dr. K. H. Gruenewald and Hr. I. 
Korobkin for their assistance in tbe preparation of this 
report. 

W. W. WILBOURNE 
Captain, USN 
Commander 

R. KENNETH LOBB 
By direction 
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SYMBOLS 

A 3 surface area involved in heat-transfer process 

a = radius of sphere 

B = constant 

c specific heat 

D ~ diameter of sphere 

h = convective heat transfer 

H = heat of sublimation 

H = average heat of sublimation 

In(~r) ~ Bessel function 

k = thermal conductivity 

K = thermal diffusivity - k/pc 

m ~ mass 

mi - mass at beginning of blow 

mf - mass at end of blow 

p = static pressure 

Poo m free-stream static pressure 

P~(~) - Legendre function of the first kind (zonal harmonic) 

q' - dynamic pressure 

q - time rate of heat transfer per unit area 

Q - total time rate of heat transfer 

r - distance from center of sphere 

t - time 

T - temperature 

Tl - constant (initial temperature of dry ice sphere) 

Te - equilibrium temperature 
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Tw - surface temperature 

u - steady-state temperature over sphere surface 

w - variable temperature within sphere 

v - u + w - total temperature 

x - distance from stagnation point in direction of flow 

b( .. root of J (orr) 
n n+l/2 

8 - gradient of local velocity evaluated at stagnation 
point 

8 - angular position on sphere measured away from 
stagnation point 

p ... density 

V - kinematic viscosity 

v 
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HEAT TRANSFER TO DRY ICE SPHERES SUBJECTED 
TO SUPERSONIC AIR FLOW 

INTRODUCTION 

1. Missiles which are to fly at supersonic and hypersonic 
speeds will encounter severe aerodynamic heating. Various 
schemes have been proposed for coping with the heating prob
lem and the principle of surface ablation has received par
ticular attention. Rather than attempting to prevent de
terioration of the missile surface due to heating, it may 
be advantageous to allow ablation to occur on the surface 
in order to protect the remainder of the vehicle. Such 
an approach seems quite feasible because of the vast 
amounts of energy which materials can absorb when under
going a change of phase. In effect, melting, evaporation, 
and sublimation represent constant temperature heat sinks. 
For these reasons investigations concerning the behavior 
of an ablating substance under the conditions of supersonic 
flow have been conducted at the Naval Ordnance Laboratory. 

2. Results of experimental research at NOL pertaining to 
the drag and rate of sublimation of dry ice models sub
jected to supersonic flow have been published by Gruenewald, 
reference (a). The present report utilizes Gruenewald's 
data for the consideration of heat transferred from the 
air to the subliming, solid carbon-dioxide and includes 
the effects of conduction within the modelS. These re
sults are compared with the heat transfer obtained USing 
non-evaporative models. 

Convective Heat Transfer to Dry Ice Spheres 

3. Assuming that only convective heat-transfer effects 
are present, the time rate of heat transfer from the air 
to a dry ice model can be determined from ablation con
siderations by the following equation: 

Q .... .6m • H 
At 

(1) 

where Q - total rate of heat transfer to the sphere; 
6m/~t - rate of ablation; and H - average latent heat of 
sublimation over the sphere. 

4. Ablation rates per square centimeter of cross-sectional 
area for 5 cm diameter dry ice spheres as determined from 
Gruenewald's data are given below: 
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Mach Number 

1.86 
2.87 
4.25 

Ablation Rate - gram/sec cm2 

0.0448 
0.0185 
0.00829 

The average latent heat of SUblimation can be expressed as 
a func tion of mass by f 

mf 

~(m) - 1 H(m) dm (2) 
mf-M i 

mi 

where H(m) is the latent heat associated with each ablated 
particle. Therefore the integral in Equation (2) represents 
the total heat of ablation. 

5. The local heats of sublimation depend upon the tempera
tures of the particular particles of mass involved, but 
these temperatures as well as other physical properties of 
the ablating substance are difficult to measure. Also it 
is not known how the ablating process influences these 
properties. However, the temperature at which SUblimation 
occurs is a function of the vapor pressure of C02 0 If the 
concentration of CO2 vapor in the vicinity of the sphere 
were 100 percent, then t~e vapor pressure would be identical 
to the static pressure on the sphere. It has been assumed 
for the purposes of this report that the CO2 vapor pressures 
and the model static pressures are identical; therefore, it 
is necessary to know the static pressure distribution around 
the sphere for the Mach numbers being considered. These 
pressure distribution data have been obtained from the work 
of Korobkin, reference (b). Sublimation temperatures 
corresponding to the static pressures on the upstream hemis
phere were determined from the ftandbook of Physios and 
Chemistry, reference (c), and are shown in Figure 1. 
Undoubtedly, the true sublimation temperatures are lower than 
the values used in this analysis. For instance, if the vapor 
pressures of CO2 were 80 percent of the static pressure the 
surface temperature would be lowered by approximately 30K at 
the stagnation point and by 10 K at Q - 900 • Therefore, the 
results may be regarded as a limiting condition. 

6. The calculated sublimation temperatures can be approxi
mated by the empirical equation: 

(3) 

where Ao and Al are constants for a given Mach number and 
9 is the angle shown in Figure 1. 
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7. Figure 2 is a plot by Gruenewald (unpublished) of 
the latent heat of sublimation of C02 as a function of 
temperature. For lEl30K~T~1930K theoretical values of 
H were computed from the equation, 

(4) 

given by Kelly (reference d). Plank and Kuprianoff, re
ference (e), give theoretical values of H for 1400K ~ T~ 1950K. 
USing a Clausius-Claperon modification for an imperfect gas, 
other values of H are given for l730K'-':T62lEloK. Experi
mental points obtained by Eucker and Donath, Maass and 
Barnes, and Kuenen and Robson are given in reference (e). 
Since these points fall between the computed theoretical 
values, they have been taken as the baSis for the solid 
curve in Figure 2 and used in the hea t··transfer analysis. 
Combining the information of Figures 1 and 2, the varia
tion in the local heat of sublimation around the hemis-
phere was determined and is shown in Figure 3. 

8. Gruenewald, reference (a), reported only gross mass 
losses on the ablating sphere, and did not indicate the 
spherical distribution of tbese losses. Therefore, it 
is impossible to determine HCm) as specified by Equation 
(2). Fortunately, the variation of H along the_sphere is 
small, Figure 3, and it is safe to assume that H can be 
determined for each Mach number on a purely geometrical 
baSiS, Ii. e. , 

- lJA 
H~i 0 HdA (5) 

Furthermore, Gruenewald has indicated that no visible 
changes occurred on the rear of the sphere nor in the 
model diameter normal to the flow during his wind tunnel 
tests. All of the ablation appeared to be restricted to 
the upstream half of the sphere. Therefore, the follow
ing values of R were 'determined from Equation (5) for the 
front hemisphere. 

Average Heat of Sublimation for a Hemisphere 

Mach NWIlber 

1.86 
2.87 
4.25 

3 

H(cal/gram) 

138.9 
140.6 
142.2 
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All heat-transfer calculations using Equation (1) were 
performed for only the upstream hemisphere. 

Heat Transfer to a Non-Evaporative Hemisphere 

9. Because only the upstream hemisphere of the dry ice 
models appeared to be subject to sublimation, a direct 
comparison between the heat-transfer results of the pre
sent analysis and previously published work on heat 
transfer to non-ablating hemispheres can be made. 

10. The time rate of heat transfer to a non-evaporative 
body is obtained from the equation 

(6) 

Where h is the heat-transfer coefficient; A the surface 
area involved in the heat-transfer process; Te the equi
librium temperature; and Tw the surface temperature. 

11. Wall temperatures were taken to be the same as those 
of the dry ice spheres and equilibrium temperatures were 
computed using values of Te/To as given by Korobkin, re
ference (b). 

12. Since local flow properties for the various Mach 
numbers are known from the experimental test conditions, 
reported in reference (a), laminar heat-transfer coef
ficients for non-evaporative hemispheres at each Mach 
number were obtained from 

hD 
. k 

F (9) - (-a-:-j-=---l/-2-

given by Korobkin, reference (b). Heat-transfer rates 
were then calculated from Equation (8). 

RESULTS AND DISCUSSION 

(7 ) 

13. The over-all heat-transfer rates for both 5 cm 
diameter dry ice hemispheres as determined from Equation 
(1) and for the corresponding non-evaporative hemisphere 
in laminar flow are given in the following table: 

4 
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Over-all Heat-Transfer Rates for Dry Ice 
and for Non-Evaporative Hemispheres 

Mach Number Over-all Q in Kcal/hr* 

1.86 
2.87 
4.25 

Dry Ice 

440 
181 

83 

Non-Evaporative 

129 
86 
40 

As can be seen from the above table, the amount of heat 
transferred to the dry ice spheres was found to be two to 
three times as great as the heat-transfer calculated for 
non-evaporative bodies. Calculations which have been 
performed for transpiration cooling by Smith, reference 
(f~ and others indicate that injection and diffusion 
effects tend to reduce the heat transfer, not to increase 
it. A possible explanation of the discrepancy is the 
effect of conduction within the sphere. 

14. Prior to testing in the wind tunnel, the sphere is 
uniformly at the sublimation temperature corresponding to 
atmospheric pressure. In the tunnel, sphere surface pres
sures are less than atmospheric and sublimation will occur 
at a lower surface temperature. Consequently, heat will 
be transferred from the high temperature interior of the 
sphere to the exterior causing additional sublimation. 
In order to make an estimate of the heat conduction ef
fects, a solid dry ice sphere with an initial temperature, 
Tl and a surface temperature distribution F(8), Equation 
(3) was examined. 

15. The surface conditions .ere considered time inde
pendent. The total temperature was taken to be equal 
to v - u + w, where u is the solution of the steady 
temperature problem; and w is the solution of the heat 
flow through a sphere with a given initial temperature, 
reference (g). From Appendix A, Equation (11), the 
total temperature is 

AIr ~ I -K0l
2 

t -1/2 ] 
v ... Ao + -;- cos 9 + aoi LAo6(e 01 (q'Oir) J1/2 (Ot01r) + 

~ ~ -KO(li 2t -1/2 ] 'ex Al e (O),i r) J3/2 (C(lir ) cos 8 
Ii Ct. 

*Va1ues are the average taken from a number of blows. 

5 
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Taking t - 40 seconds (the average length of blow in wind 
tunnel for dry ice tests), p = 1.52 g/cm3 (determined from 
dry ice used in tests), C - 0.31 ca1/g0 C (reference h) and 
k = .00108 cal/cmoC sec, (reference i), and a - 2.5 cms, 
the heat transfer at the surlace was determined from the 
equations 

The results are included in the table below. 

Heat Transfer by Conduction in 5 cm Diameter 
Dry Ice Hemisphere 

Mach Number 
1.86 2.87 4.25 

Difference be- Kcal/hr. 
tween over-all 
heat-transfer 

311 rates for dry 98 43 
ice and non-
evaporative 
hemispheres 

Difference in ICc a 1 
total heat 
transfer to dry 3.456 1.088 0.4776 
ice and non-
eva pora t i ve 
hemispheres 
over a period 
of 40 sec. 

Computed heat Kcal 
transfer by 
conduction in 0.05557 0.1066 0.1614 
dry ice hemis-
phere in 40 
sec. 

Percentage of % 
total heat 
transfer dif-
ference accounted 1.61 9.80 33.80 
for by conduction 
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The conduction effects are more pronounced at the higher 
Mach numbers at which wind tunnel pressures and temper
atures are lowest. The conduction calculation has ignored 
the effects at the rear of the sphere since it was assumed 
initially that no ablation occurred in that region. Ac
tually, the base of the sphere is subjected to the lowest 
temperatures and conduction effects are probably greatest 
in that region. An upper limit to the total conduction 
to the entire sphere for a period of 40 seconds has been 
calculated as: 

1.S6 
2.S4 
4.25 

Kcal 

0.2003 
0.3436 
0.4625 

Percent of difference in 
heat transfer between 
ablating an non-evaporative 
model 

5.S 
31.6 
96.S 

16. In all cases, the dry ice model has been assumed 
spherical in shape for heat-transfer computations. How
ever, at the lower Mach numbers there is considerable 
change in the contour of the model during a blow. This 
change from a spherical front to a more cone-like or to 
an irregular front would cause an increase in the heat
transfer rates. Also, probably due to the inhomogeneties 
of the dry ice material, the surface becomes quite rough 
and again the heat-transfer rates would tend to increase. 

17. Another possible explanation of the apparently high 
heat transfer to the ablating sphere is mechanical failure 
of the model material. At the lower Mach numbers, strong 
dynamtc forces acting upon the dry ice sphere caused loss 
of mass through surface fragmentation with particles being 
swept downstream. However, as the Mach number increased, 
the amount of such visible erosion decreased. Thus, me
chanical erosion effects are most important where con
duction effects are minimum. 

CONCLUSIONS 

IS. The determination of heat-transfer rates to subliming 
dry ice spheres as simply calculated from mass ablation 
rates yields results which are higher than can be justi
fied by convective conSiderations. This may be accounted 
for by: (1) increase in local heat-transfer rates due to 
surface roughness; (2) increase in heat transfer due to 
change in model shape; (3) loss of mass without heat 
transfer through fragmentation; (4) l.ck of knowledge 
concerning properties of solid C02; (5) lack of knowledge 
concerning vapor pressure around model; and (6) internal 
heat conduction. Heat conduction effects internal to 

7 
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the model are significant, especially at the highest Mach 
number tested, when the greatest change in environmental 
pressure occurred. 

19. Before gen,uinely conclusive results can be obtained 
on ablating bodies in supersonic flow, either methods 
must be devised for obviating the phenomena of mechanical 
erosion and internal conduction or these effects must be 
accounted for accurately. 

8 
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APPENDIX A 

Heat Conduction Through a Solid 
Carbon-Dioxide Sphere 

1. Considering a solid sphere and assuming that surface 
conditions do not vary with time, 

ov 2 ot - k~ v through the solid 

v - '1:1 initially 

v - F(8) at the surface 

Let 

(AI) 

where u is a function of , only and satisfies ~2u - 0 
through the sOlid; u - F(8) at the surface; and w~ere w 
is a function of r, 8 and t such that~w/Jt .... X'V' w through 
the solid; w - [g(r,8) - uJ initially; and w - 0 at the 
surface. Then u is the solution of the steady temperature 
problem 

(2) 

reference (g). The steady temperature distribution over 
the surface of the front half of a dry ice sphere satisfied 
the relation F(8) - Ao + Al cos 8 where Ao and Al are con
stant for a given Mach number, see page 6 of text and Fig
ure 3. So that its solution fro. Equation (2) is 

u - AoPo(~) + Al(i) Pl(P) (3) 

since ~ - cos 8, Po(~) - 1 and Pl(~) - cos 8 and ~ has 
values of 0 and 1 only. 

g(r,8) - Tl - u - (Tl-Ao)Po(~) - Al(~)P&(~) 
(4) 

w is the solution of the problem of variable temperatures 
with zero surface temperature, reference (g). 

10 
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(5) 

vbere~ni is a root of In+l/2(~ia). Since n bas values 
of 0 and 1 tbere are two sets of 0< ts and Equation (5) can 
be expanded as 

A,(JI., 

2 (T,-A
II

) J3/~(O(Oo..) 
(Qbo.)Y~ [J ~ (o.<oo.D ~ .... 

:: - 2 _~~ .. _ ~£~~cXl 0.) ____ ._ .. 

(eX, ~) y~ [J~ (Q(/~ ~ 

11 

(7 ) 

(8) 

(9) 

(10) 

(11 ) 
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For a hemisphere, 

(13) 

(14) 

Heat conducted through a hemisphere in tl seconds can be 
obtained by integrating Q with respect to t through the 
interval 0 to tl k ~ ~ 
tt r (,-e- cr~i I) 
~ 10 dt =-~ TTQ 2 A I t, -4 (7; -Ao)'f~i ~.;;;:- + 

A <:: (I - e -k<¥;i.j} 
2 ,,- ----

I .,( • K"'''' 
It "'/ i 

(15) 

(11) 

(17) 

12 
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VS. ANGULAR POSITION ON DRY ICE SPHERE 
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